POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Chemistry of biomolecules [S1TCh2>CB]

dr hab. inż. Anna Parus anna.parus@put.poznan.pl			
Coordinators	Lecturers		
Number of credit points 1,00			
Tutorials 0	Projects/seminar 0	S	
Number of hours Lecture 15	Laboratory class 0	es	Other 0
Form of study full-time		Requirements compulsory	
Level of study first-cycle		Course offered ir Polish	ſ
Area of study (specialization) –		Profile of study general academi	ic
Field of study Chemical Technology		Year/Semester 3/5	
Course			

Prerequisites

The student should have basic knowledge of physics, chemistry and biology concerning thermodynamics, electrochemistry, structure, properties of chemical compounds and have the ability to work in a chemical laboratory.

Course objective

To learn about the chemical structure of basic bio-molecules such as proteins, nucleic acids, carbohydrates, lipids and their derivatives. To learn about the reactivity of bio-molecules of great importance in the functioning of organisms. To lay the groundwork for a better understanding of the major subjects.

Course-related learning outcomes

Knowledge:

- The students has a non-negligible knowledge of chemistry to the extent that it allows to understand chemical phenomena and processes (K_W03)

- The students has systematized, theoretically supported general knowledge in general and inorganic, physical and analytical chemistry (K_W08)

- The students knows the cell structure and functions of cell structures, biochemical basis of metabolic pathways (K_W06)

- The student knows selected groups of bioactive compounds, their biochemical properties and effects on cells and living organisms (K_W08)

Skills:

- acquire information from literature, databases and other properly selected sources, also in English (K_U01)

- use basic laboratory techniques in synthesis, isolation and purification of chemical compounds, including bio-molecules and biologically active compounds (K_U03)

- apply analytical, simulation and experimental methods to formulating and solving research tasks under the supervision of a tutor (K_U07)

Social competences:

- can think and act in an entrepreneurial way (K_K06)

- understands the need for further education and improving his/her professional, personal and social competences (K_K01)

- is able to appropriately determine priorities for the implementation of the assigned task (K_K04)

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

The knowledge acquired in the lecture is verified during a written credit at the end of the semester. Credit threshold: 50% of the points.

Programme content

Issues: chemical structure and reactivity of basic bio-molecules.

Course topics

Lectures:

Lectures: Discussion of topics related to:

1. the structure and properties of proteins and amino acids, nucleic acids, enzymes, carbohydrates and their derivatives, as well as lipids and prenyl lipids and vitamins.

- 2. the reactivity of bio-molecules of importance in the functioning of organisms
- 3. methods of identifying selected chemical combinations and natural bio-molecules

Teaching methods

1. Lecture with a multimedia presentation, discussion with students, laboratory classes.

Bibliography

Basic:

1. Murray R.K., Granner D.K., Mayes P.A., Rodwell V.W.: Biochemia Harpera PZWL.

2. Berg J.M., Tymoczko J.L., Stryer L.: Biochemia, PWN, Warszawa.

3. Cichocki M. Biochemiczne i molekularne podstawy biotransformacji ksenobiotyków. WN UMP 2015

Additional:

1. Kączkowski J.: Podstawy biochemii, PWN, Warszawa.

2. Hames B.D., Hooper N.M., Houghton J.D.: Biochemia - krótkie wykłady, PWN, Warszawa.

Breakdown of average student's workload

	Hours	ECTS
Total workload	25	1,00
Classes requiring direct contact with the teacher	15	0,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	10	0,50